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Motivation
• Typically,	assume the	radar	pulse	
volume	is	uniformly	filled	with	
hydrometeors.	
• This	assumption	breaks	down	as	the	
radar	pulse	volume	increases.

Questions:
• What	is	the	precipitation	variability	
across	the	5	km	GPM	Dual-
Frequency	Precipitation	Radar	(DPR)	
footprint?
• To	help	rainfall	retrieval	algorithms,									
is	there	enough	statistical	signal	to	
parameterize	sub-volume	variability		
using	neighboring	radar	
observations? (aka,	downscaling)

NASA/JAXA	Global	Precipitation	
Measuring	Mission	(GPM)							
Core	Observatory



Precipitation	Variability	at	different	scales
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Validation	(GV)	Program	
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Simulate	larger	volume	
satellite	observations
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Outline	of	Presentation
• Definition	of	Terms
• Impacts	of	sub-FOV	variability	on	satellite	algorithms
• Power-law	formulation	in	PR	&	DPR	algorithms
• NASA	Ground	Validation	(GV)	Program	Observations
‒ Describe	scanning	radar	data	set
‒ Simulate	Ku/Ka-band	reflectivity	and	specific	attenuation
‒ Simulate	DPR	Field	of	View	(FOV)

• Statistics:	FOV	vs.	3x3	neighboring	pixels
• Impacts	of	NUBF	on	PIA	SRT	estimates		
• Concluding	remarks	and	future	work



Definition	of	Terms
• Instantaneous	Field-of-View	(IFOV	or	FOV)
‒ Radar	pulse	volume	weighted	by

• antenna	pattern	(cross-beam	or	spatial)
• receiver	bandwidth	(along-beam	or	range)

• Non-Uniform	Beam	Filling	(NUBF)
‒ Precipitation	variability	within	FOV

3	km

(Kozu &	Iguchi	1999)



Impact	of	NUBF	on	Satellite	Algorithms
• Impact	#1:	Area	averaging	of	rain	rate	and	reflectivity	

‒ From	Jensen’s	equality,	and	concave	functions	(𝑏 < 1),	averaged	rain	rate	
< 𝑅 > and	averaged	reflectivity	< 𝑍 >:

𝑅 = 𝑎𝑍) ≤ 𝑎 𝑍 )

Magnitude	of	the	inequality	increases	with	spatial	variability

• Impact	#2:	Path	Integrated	Attenuation	(PIA)	is	underestimated
‒ Narrow	columns	of	large	Z	have	larger	path	integrated	attenuation	which	

reduce	measured	Z	at	further	ranges	in	that	column
‒ Area	average	specific	attenuation	𝑘	[dB/km]	is	not	a	simple	relationship:	

𝑍-
./0 − 𝑍-)/../- ≠ 2Δℎ𝑡 𝑘,	

where	Δℎ𝑡 is	the	distance	between	the	two	measurements

Note	that	multiple	scattering	modifies	𝑍- and	𝑘 in	complex	ways	within	the	FOV.	
NUBF	occurs	before	multiple	scattering	occurs	(at	5	km	scales).	Thus,	NUBF	is	a	
pre-condition	for	multiple	scattering	(Battaglia et	al.	2015)



PR	&	DPR	Algorithm	Formulation
• Power	law	relationships:

𝑘 − 𝒵 𝑘 = 𝛼𝒵9 [𝑘]	=	[dB/km],			[𝒵]	=	[mm6/m3]	
𝑅 − 𝒵 𝑅 = 𝑎𝒵) [𝑅]	=	[mm/hr]

• Solver	module	based	on	Hitschfeld-Bordan method	
(Iguchi	&	Meneghini 1994;	Iguchi	et	al.	2000)
𝑘 = 𝜀	𝛼𝒵9
𝑅 = 𝜀;𝑎𝒵)

• Solver	module	adjusts	𝜀 until	convergence
‒ DSD	adjustment
‒ NUBF	adjustment	(larger	of	the	two	adjustments)



Quantifying	NUBF	Variability
• Kozu &	Iguchi	(1999)	used	tropical	
TOGA-COARE	scanning	radar	
observations	to	relate	field-of-view	
(FOV)	variability	with	variability	of	
surrounding	FOV	mean	values.

• Two-pass	algorithms:
‒ First	pass	provides	estimates	of	

neighboring	FOVs	that	are	used	to	
parameterize	sub-FOV	variability

‒ Second	pass includes	NUBF	
parameterization

• NUBF	variability	parameterized	using	
coefficient	of	variation (cov)
cov =	standard	deviation	/	mean

• Notation:
“FOV	cov”	=	sub-FOV	variability
“3x3	cov”	=	neighborhood	variability

Question:	
Are	there	relationships	
between	FOV	cov and	3x3	cov
in	naturally	occurring	rain?



Ground	Based	Radar	Observations
• NASA	Global	Precipitation	Measurement	(GPM)	satellite	
sponsored	Ground	Validation	(GV)	field	campaign
• Integrated	Precipitation	and	Hydrology	Experiment	(IPHEx)
• Southern	Appalachian	Mountains	(North	&	South	Carolina,	USA)
• May-June	2014

PPI	Scan	Strategy	
3	elevation	angles	(1.5°,	2° and	3°)
360° azimuth	rotation	(6°/s)
Maximum	range	150	km
Limit	data	to	60	km:	height	is	~1.75	km	AGL	
1° beam	width	(~1	km	breadth	@ 60	km
125	m	range	resolution

This	analysis	used:
3° PPI	scan
3	minute	temporal	resolution

NASA	S-band	
Polarimeteric Radar	(NPOL)



Converting	Raw	Data	into	1x1	km	Grid
• Polarimetric	samples	in	cylindrical	coordinate:

‒ Reflectivity:	𝑍< [dBZ]
‒ Differential	Reflectivity:	𝑍=> [dB]

• Grid	PPI	scans	to	1x1	km
‒ Gaussian	weight
‒ 6	dB	loss	at	1	km

Raw	Observations	(range,	azimuth)

1x1	km	grid

Reflectivity
Differential
Reflectivity



DSD	Parameters	(1x1	km)
• Modified	Gamma	shape	raindrop	size	distribution:	

𝑁 𝐷 =	𝑁A
6
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With	parameters
𝑁A – Normalized	number	concentration	[#/mm/m3]
𝐷- – Mean	volume-weighted	diameter	[mm]
𝜇 – Shape	parameter

• Comparisons	with	IPHEx disdrometers,	GV	found	relationships:
𝐷- = 0.1887𝑍=>Q − 1.0024𝑍=>R + 2.3153𝑍=> + 0.3834
𝑁A = 35.43 10 UV/XY 𝐷-Z[.X\R

• Shape	parameter	assumed	dependent	on	𝐷- (Williams	et	al.	2014)
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• Estimate	rain	rate	
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DSD	Parameters	&	Rain	Rate	(1x1	km)

Gridded	data	set:
1x1	km	
3	minute

Inputs
𝑍< and	𝑍=>

Outputs:
𝐷-,	𝑁A and	𝑅



Simulate	Ku/Ka-band	Measurements
• Input:	DSD	parameters	(𝑁A,	𝐷-,	𝜇)	at	each	1x1	km
• Model:	NASA	GPM	T-matrix	scattering	tables	(Liang	Liao)
• Output:	Simulated	13/35	GHz	(Ku/Ka-band)	at	1x1	km:
‒ Intrinsic	reflectivity:	𝑍(𝐾𝑢) &	𝑍(𝐾𝑎) (no	atten)	[dBZ]
‒ specific	attenuation:	𝑘(𝐾𝑢) &	𝑘(𝐾𝑎) [dB/km]

Rayleigh	Reflectivity	(Observed)

Ku-band	Reflectivity	
(simulated)

Ku-band	specific	
attenuation	
(simulated)



Simulating	Satellite	Field-of-View
• TRMM	and	GPM	antenna	beamwidths at	Earth’s	surface	are	5	
km	diameter
• Simulate	radar	field-of-view	(FOV)	

‒ Use	Gaussian	weighting	with	6	dB	loss	at	5	km
‒ Input:	1x1	km	resolution
‒ Output:	5x5	km	resolution

• With	each	FOV,	calculate:
‒ Mean	value
‒ Standard	deviation
‒ Coefficient	of	variation	

• cov =	standard	deviation/mean

• Quantities:
‒ R:	Rain	rate
‒ Z(Ku):	Ku-band	reflectivity
‒ k(Ku):	Ku-band	specific	attenuation	



Example	of	Simulated	5	km	FOV

Input:	
1x1	km Output:	

FOV	mean

Output:	
FOV	std

Output:	
FOV	cov
(std/mean)

Calculate	FOV	mean	value	and	sub-FOV	variability



Analyze	Rain	Filled	3x3	Neighborhoods
• Want	to	calculate	statistics	with	only	raining	pixels	
• Each	5x5	km	FOV	is	classified	as	either:

Outside		FOV:	𝑍(𝐾𝑢) < 20 dBZ	no	precipitation	in	FOV
Edge	FOV:	 Z Ku ≥ 20 dBZ	and	at	least	one	neighbor	is	Outside	FOV
Inside	FOV:	 Z Ku ≥ 20 dBZ and	all	8	neighbors	have	𝑍 𝐾𝑢 ≥ 	20 dBZ

• Only	Inside	FOVs	are	analyzed



Maps	of	FOV	and	3x3	Estimates
Ku-band
Reflectivity

Ku-band
Specific	Atten.

Observed
Rain	Rate

Mean

FOV
cov

3x3
cov



FOV	and	3x3	Variability	(Individual	Scan)
Is	there	a	relationship	between	3x3	variability	with	FOV	
variability?
(Downscaling)
• For	an	individual	scan:
‒ Scatter	plots	of	FOVcov vs.	3x3cov

Ku-band
Reflectivity

Ku-band
Specific	Atten.

Observed
Rain	Rate



FOV	and	3x3	Variability	(Storm)
15-May-2014	Storm	event

‒ 12,520	valid	3x3	domains
‒ Circles:	most	frequent	occurrence
‒ Vertical	lines:	25-to-75	percentiles

Ku-band
Reflectivity

Ku-band
Specific	Atten.

Observed
Rain	Rate



Impact	of	NUBF	on	Satellite	Algorithms
• Impact	#1:	Area	averaging	of	rain	rate	and	reflectivity	

‒ From	Jensen’s	equality,	and	concave	functions	(𝑏 < 1),	averaged	rain	rate	
< 𝑅 > and	averaged	reflectivity	< 𝑍 >:

𝑅 = 𝑎𝑍) ≤ 𝑎 𝑍 )

Magnitude	of	the	inequality	increases	with	spatial	variability

• Impact	#2:	Path	Integrated	Attenuation	(PIA)	is	underestimated
‒ Narrow	columns	of	large	Z	have	larger	path	integrated	attenuation	which	

reduce	measured	Z	at	further	ranges	in	that	column
‒ Area	average	specific	attenuation	𝑘	[dB/km]	is	not	a	simple	relationship:	

𝑍-
./0 − 𝑍-)/../- ≠ 2Δℎ𝑡 𝑘,	

where	Δℎ𝑡 is	the	distance	between	the	two	measurements

Note	that	multiple	scattering	modifies	𝑍- and	𝑘 in	complex	ways	within	the	FOV.	
NUBF	occurs	before	multiple	scattering	occurs	(at	5	km	scales).	Thus,	NUBF	is	a	
pre-condition	for	multiple	scattering	(Battaglia et	al.	2015)



(Kozu &	Iguchi	1999)

Summary:	3	Scales:	1	km,	5	km	&	3x3
• 1x1	km	scale:	

‒ Assume	rain	is	uniform	over	1x1	km	
horizontal	scale

‒ Construct	fundamental	k-Z	and	R-Z	
power-law	relationships

• 5x5	km	scale:	Field-of-View	(FOV)
‒ DPR	beamwidth at	Earth’s	

surface	is	5	km
‒ Gaussian	weighting	with	6	dB	

loss	at	5	km
‒ With	each	FOV,	calculate:

• Mean	value
• Coefficient	of	variation
cov =	std/mean	

• 3x3	Neighboring	FOVs
‒ 3x3	coefficient	of	variation

3	km



1x1	km	Data	&	Horizontal	Uniform
• 1x1	km:	Determine	k-Z,	k-R,	and	R-Z	relationships

𝑘 = 0.0242	𝑅X.Yp\ (Ku-band)	 [𝑘]	=	[dB/km]	
𝑘 = 0.2213	𝑅X.YRD (Ka-band) [𝑅]	=	[mm/hr]

• 5x5	km:	Areal	average	rain	rate
< 𝑅 >	= ∑𝐺 �̅� 𝑅XtX �̅��

�
where	𝐺(�̅�) is	the	antenna	weighting	function

• Assume	horizontal	uniform	rain	(no	NUBF)
< 𝑅 >	= 	𝑅vwxy/>- = 𝑅v
< 𝑘 >	= 	𝑘vwxy/>- 	= 𝑘v = 𝑐 < 𝑅 >=
𝑃𝐼𝐴vwxy/>- = 2	Δℎ𝑡 	𝑘v [𝑃𝐼𝐴]	=	[dB]

where	Δℎ𝑡 = 3 km	in	this	study



PIA	Surface	Reference	Technique	(SRT)
• Surface	return	power	is	equal	to	the	“clear”	return	
reduced	by	the	precipitation	attenuation	factor	𝐴:
𝜎-���Y = 𝜎����>Y ∑𝐺 �̅� 𝐴 �̅��

� [scaler:	0 ≤ 𝐴 ≤ 1]
= 𝜎����>Y ∑𝐺 �̅� 10 ZY.X R	�<. � t̅�

�
[𝐴 =	0	=	extinguished]
[𝐴 = 1 =	no	attenuation]

• SRT	Attenuation	factor:
𝐴��� = 𝜎����>Y −	𝜎-���Y

• SRT	PIA	[expressed	in	dB]:
𝑃𝐼𝐴��� = −10𝑙𝑜𝑔 �^�d�

_

����d�
_

= 10𝑙𝑜𝑔 ∑𝐺 �̅� 10 ZY.X R	�<. � t̅�
� [dB]



Rain	Rate	from	Measured	PIA
• The	measured	𝑃𝐼𝐴��� could	contain	NUBF:
𝑃𝐼𝐴���,w/wZvwxy/>- = 𝑃𝐼𝐴���,wv
• Assume	 𝑃𝐼𝐴���,wv is	“correct”,	then	rain	rate	is:

𝑃𝐼𝐴���,wv = 2	Δℎ𝑡 𝑘wv à 𝑘wv =
������,��
R	�<.

𝑅wv =
���
�

�
�



Rain	Rate	at	FOV	Resolution

Areal	
Average
uniform
𝑅v

𝑃𝐼𝐴���,wv

Rain	rate
non-uniform

𝑅wv

𝑘(𝐾𝑢)wv

Method	#1	(uniform) Method	#2	(non-uniform)



Rain	Rate	at	FOV	Resolution

𝑅vwxy/>-

non-uniform
𝑅wv



Specific	Attenuation	at	FOV	Resolution

1x1	km	 mean

cov std



Rain	Rate	at	FOV	Resolution

𝑅vwxy/>-

𝑅vwxy/>-

non-uniform
𝑅wv

non-uniform
𝑅wv

Color	is
FOV
cov(k(Ku))

k(Ku)
variability
within	5	km
FOV	



PIA	SRT	Impacted	by	FOV	variability

𝑃𝐼𝐴���,vwxy/>-

𝑃𝐼𝐴���,vwxy/>-

Color	is
FOV
cov(k(Ku))

k(Ku)
variability
within	5	km
FOV	

non-uniform
𝑃𝐼𝐴���,wv

non-uniform
𝑃𝐼𝐴���,wv



PIA	SRT	Impacted	by	3x3	variability

𝑃𝐼𝐴���,vwxy/>-

𝑃𝐼𝐴���,vwxy/>-

Color	is
3x3
cov(PIA))

PIA
variability
within	3x3
neighborhood

non-uniform
𝑃𝐼𝐴���,wv

non-uniform
𝑃𝐼𝐴���,wv



Dual-Frequency	PIA	SRT
Can	we	use	dual-frequency	𝑃𝐼𝐴��� to	infer	sub-FOV	variability?
Ratio	of	𝑃𝐼𝐴���: 𝑝 = ������(��)

������(�v)
For	uniform	FOV	and	DSD	parameters	(not	power-laws):

𝑝 = ������(��)
������(�v)

= 𝑓 𝐷-, 𝜎- 	

(because	𝑁A cancels	in	the	ratio)

𝑝	~	6 for	ratio	of	power-laws	



PIA	(Ka)	vs.	PIA	(Ku)

Color	is
FOV
cov(k(Ku))

k(Ku)
variability
within	5	km
FOV	

𝑃𝐼𝐴���(𝐾𝑢)

𝑃𝐼𝐴���(𝐾𝑢)

𝑃𝐼𝐴���
(𝐾𝑎)

𝑃𝐼𝐴���
(𝐾𝑎)



Concluding	Remarks	and	Future	Work
Summary	of	conclusions
• Sub-FOV	variability	linearly	related	3x3	FOV	variability
• Correlation	was	only	approximately	0.6
• NUBF	parameter	could	be	used	as	a	statistical	

constraint	in	a	probabilistic	algorithm,	but	not	in	
deterministic	algorithms	

• Actual	performance	depends	on	algorithm	logic	and	
cost	minimization	procedure

Future	Work
• Investigate	deviation	from	expected	(uniform	FOV)	dual-
frequency	PIA	ratio	as	NUBF	variability	parameter


